If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-15x-528=0
a = 3; b = -15; c = -528;
Δ = b2-4ac
Δ = -152-4·3·(-528)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-81}{2*3}=\frac{-66}{6} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+81}{2*3}=\frac{96}{6} =16 $
| 2(2q+1.5)=18q | | -3(2x+7)=4x-19 | | 30+4n=5(7n+6 | | -12=2+2m+5m | | 2w=18w | | -13=q/5 | | 5x+3-(x+1)=14 | | -8x-28=6(x-7) | | x-3-10=-6 | | -828-10n-2=n | | 13f=143 | | (7x+13)+(9x-3)=90 | | 5^(3x)=8^(x+1) | | 18h=648 | | 3(4y+5)=6(1-y | | (3^2x-1)=45 | | 89x–13x+4=59(x+2) | | 20v=640 | | 3-2x^2=35 | | 3^2x-1=45 | | 2(13+x)–10=89+13 | | 6r=666 | | 2j+7=12-3j | | 6.4375+.35x=9 | | 27r=621 | | 4/(3-w)=18/w | | -2=x+4/8 | | 2(x+7)=5(x–7) | | 6.4375+.35x=9.5 | | v/13=29 | | 5=x-(1+3x) | | 4×(x3)=-4 |